20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations
نویسندگان
چکیده
منابع مشابه
A Dual-Primal FETI method for incompressible Stokes equations
In this paper, a dual-primal FETI method is developed for incompressible Stokes equations approximated by mixed nite elements with discontinuous pressures. The domain of the problem is decomposed into nonoverlapping subdomains, and the continuity of the velocity across the subdomain interface is enforced by introducing Lagrange multipliers. By a Schur complement procedure, solving the inde nite...
متن کاملA Preconditioner for the Feti-dp Formulation of the Stokes Problem with Mortar Methods
We consider a FETI-DP formulation for the Stokes problem on nonmatching grids in 2D. The FETI-DP method is a domain decomposition method that uses Lagrange multipliers to match the solutions continuously across the subdomain boundaries in the sense of dual-primal variables. We use the mortar matching condition as the continuity constraints for the FETI-DP formulation. Moreover, to satisfy the c...
متن کاملA Neumann-dirichlet Preconditioner for a Feti-dp Formulation with Mortar Methods
In this article, we review a dual-primal FETI (FETI-DP) method with mortar methods. The mortar matching condition is used as the continuity constraints for the FETI-DP formulation. A Neumann-Dirichlet preconditioner is investigated and it is shown that the condition number of the preconditioned FETI-DP operator for the two-dimensional elliptic problem is bounded by C maxi=1,...,N{(1 + log (Hi/h...
متن کاملA FETI-DP Formulation for Two-dimensional Stokes Problem on Nonmatching Grids
We consider a FETI-DP formulation of the Stokes problem with mortar methods. To solve the Stokes problem correctly and efficiently, redundant continuity constraints are introduced. Lagrange multipliers corresponding to the redundant constraints are treated as primal variables in the FETI-DP formulation. We propose a preconditioner for the FETI-DP operator and show that the condition number of t...
متن کاملA FETI-DP Formulation for the Stokes Problem without Primal Pressure Components
A scalable FETI–DP (Dual-Primal Finite Element Tearing and Interconnecting) algorithm for the Stokes problem is developed and analyzed. Advantages of this approach are a coarse problem without primal pressure unknowns and the use of a relatively cheap lumped preconditioner. Especially in three dimensions, these advantages provide a more robust and faster FETI-DP algorithm. In three dimensions, ...
متن کامل